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The nitroaldol reaction or Henry reaction constitutes an important Scheme 1. A General Approach to Optically Active Tertiary
class of G-C bond forming reactions that provide straightforward ~Carbinols
access to important synthetic intermediates from readily accessible O OoN OH OH

) o . R
nitroalkanes and carbonyl compouriddue to its significance in R)kH/OR‘ %OR‘ = 1
organic synthesis, considerable efforts have been devoted to the 2
development of efficient catalytic asymmetric nitroaldol reactins.
Consequently, several chiral metal complexes and chiral phase
transfer catalysts have been identified to be highly efficient catalysts
for enantioselective nitroaldol reactions with aldehy#les.

In contrast to the substantial progress made with aldehydes, the
development of enantioselective nitroaldol reaction with ketones
has met with limited succedsTo date, only one catalyst system,
consisting of a Curbisoxazoline complex and triethylamine, has  Figure 1. C6—0OH cinchona alkaloid derivatives.
been identified to afford synthetically useful enantioselectivity for
the addition of nitromethane ta-ketoesters2.42b However, in
addition to requiring a catalyst loading of 20 mol % and the use of
anhydrous conditions, both the yield and enantioselectivity of the Q o 02t (10 mol%) CHaNO, (10 eq) 0N\ OH _ ON Nga
reaction display a dependence on the structur2 &or example, /VKW CHaCly . 12 h, -20°C /Q*S(OE‘ + J\ﬁkﬁoa
the enantioselectivity was high for reactions with axyketoesters 2a© 3 © 3" 0O
bearing an electron-withdrawing group on the aromatic ring, and

o 0]

Table 1. Enantioselective Nitroaldol Addition of Nitromethane to
a-Ketoester 2a2

it became moderate when the electron-withdrawing group was e catalyst conv. C6) ot ee 06
replaced with an electron-donating substituent. Depending on the % S%N 335 Eg’é% _17
steric bulk of the alkylo-ketoesters, the enantioselectivity could 3 DHQD-PHN 74 ~05/5 59
be either high or modest. Farketoesters bearing an alkenyl group, 4 (DHQD)RAQN >95 >95/5 40
synthetically useful enantioselectivity was not attainable. 5 B-1ICD >95 >95/5 61

On the other hand, it is especially desirable to realize a catalytic ? 88:12 ;3?5 iggg ?8
asymmetric nitroaldol reaction that affords high enantioselectivity 8 QD-1c 93 ~95/5 93
for a wide rang ofi-ketoester®. Such a reaction, in combination 9 QD-1d >95 >95/5 97
with the synthetic versatility of the ester and the nitro groups, will 10 Qd >95 >95/5 -97

provide enantioselective access to a broad range of optically active

; ; ; At ; 2 Unless noted, reactions were carried out with 0.1 mm@afL. mmol
tertiary carbinols (Scheme 1). In this communication, we wish to of CHsNOs in 0.1 ML of CHCl, with 10 mol % catalyst at-20 °C for 12

report a significant progress toward achieving this goal. h.? See Supporting Information for the structure of the catalydbeter-
Although effective chiral organic catalysts have been reported mined by*H NMR analysis.? Determined by HPLC analysis.

for enantioselective aza-Henry reactiérfsno broadly effective
chiral organic catalyst has been developed for the direct asymmetricachieved for nitroaldol reactions of this important classxefe-
Henry reaction. We recently reported'€®H cinchona alkaloids toesters. Furthermore, alkengtketoesters could engage in 1,2-
la—c (Figure 1) as efficient catalysts for various enantioselective as well as 1,4-additions with a nitroalkane, thus presenting a
conjugate addition$.Mechanistic studies from our laboratories particularly challenging class of substrates for nitroaldol reactions.
indicated that catalyst could serve as acitbase bifunctional As reported previousl§® nitromethane reacted witBa in the
catalysts via hydrogen bonding interactions with the Michael donor presence of EN to give product8aand3a in 4:1 ratio (entry 1,
and acceptor through the quinuclidine nitrogen and the-COf, Table 1).
respectively. In light of the wide range of nucleophiles and Promoted by various cinchona alkaloids, the addition of ni-
electrophiles that could engage in hydrogen bonding interactions, tromethane to2a in methylene chloride proceeded in a highly
we envisaged that catalystsnight be able to effectively stabilize ~ chemoselective fashion to cleanly afford the nitroaldol pro®act
and organize transition states involving nucleophiles and electro- (Table 1). The enantioselectivity of the ©8H cinchona alkaloids
philes other than Michael donors and acceptors, thereby allowing 1a—c was found to be considerably higher than that displayed by
1 to function as efficient enantioselective catalysts for reactions C6 —OMe cinchona alkaloids (entries—8 vs 2-4, Table 1).
that are mechanistically distinct from conjugate additions. Guided Furthermore, the significant impact of the C9 substituent (OR) on
by these considerations, we began to investigads catalysts for the enantioselectivity of raised the possibility of finding a more
enantioselective nitroaldol reaction withtketoesters. effective and practical C6OH cinchona alkaloid for the nitroaldol
We first focused on the addition of nitromethane to alkenyl reaction by modifications of this substituent. Further studies
o-ketoester2a because high enantioselectivity had not yet been following this hypothesis led to the discovery that'€®H
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Table 2. Enantioselective Nitroaldol Addition of Nitromethane to
o-Ketoester 2 Catalyzed by QD-1d and Q-1d (in parentheses)?

()

QD-1d (Q-1d) (5 mol%) HO_ ,—NO,
OEt OEt
RJ\H/ CH3NO; (10 equiv.) R™*
0o 2 CH,Cl,, -20 °C 0 3
Entry R Time/h yield/%? ee/%°
1 2a P 14 (15)  92(92) 96 (97)
2 2b o A 24(24)  98(99) 94 (95)
3 2 Ph- 35(46) 96 (96) 959 (93)
4 2d 4-MeO-Ph-  06(96) 86 (84) 94 (97)
5 2e 4MeS-Ph- 72(72) 86 (86) 96 (96)
6 2f 4-Cl-Ph- 12 (12) 98 (96) 979 (96)
7 2g 4CN-Ph-  9(11)  96(98) 94 (97)
8 2h  3-Cl-Ph- 11(11) 91 (96) 95 (95)
9 2i 2-Naphthyl- 60 (60) 96 (97) 94 (94)
10 2j Me- 12(12) 89 (90) 95 (95)
1 2k n-Pr- 17 (15) 90 (90) 93 (93)
12 2l pp % 14 (11)  88(89) 95 (94)
13 2m Eto,c % 15(11) 87 (86) 94 (93)

aUnless noted, reactions were run with 0.5 mmol2pf5 mmol of
CH3NO; in 0.5 mL of CHCI, with 5 mol % QD-4d; the results in
parentheses were obtained with1@-to give opposite enantiomer; see
Supporting Information for detail$.Isolated yield ¢ Determined by HPLC
analysis.d The absolute configuration is determined to$eee Supporting
Information for details.

Scheme 2. Asymmetric Synthesis of g-Lactam, Aziridine, and
o-Methylcysteine Derivatives (see Supporting Information for
details)?@

HO COEt (a) HO COEt () HO COEt  (d) . CO,Et
NO, ™ Ha N3 R
R * R * R NH
3¢ R=Ph, 95% ee 4cR=Ph 6cR=Ph, 96%ee 7¢cR=Ph,91% ee
3j R =Me, 95% ee 4jR =Me 6jR=Me, 95% ee 7jR=Me, ee. N.D.
o | @
MeO
*OH o} NH,
R S\}k\co Et
2!
NH R

5¢ R =Ph, 95% ee 8j R = Me, 94% ee

aConditions: (a) Raney Ni, (1 atm); (b)i-PrMgCl, 38% yield over
two steps; (c) TfN, CuSQ(cat.), foréc, 84% yield over two steps; faj,
63% yield over two steps; (d) PEhCH:CN, for 7¢, 80% yield; for 7j,
71% yield; (e) BR-Et,0, p-methoxybenzyl mercaptan, 56% yield.

cinchona alkaloid bearing a €9Bz group (QD4d) is even more
effective tharila—c. The addition of nitromethane #awith either
QD-1d or Q-1d occurred in 97% e¢entries 9 and 10, Table 1). It
is noteworthy that the preparation ad employs significantly
cheaper reagents than those required for the preparatiba®f

With 5.0 mol % ofld, excellent enantioselectivity and high yield
could be attained not only for alkengl-ketoester®ab but also
for a broad range of aryl and alkgl-ketoesterc—m (Table 2)?
Thus, the enantioselectivity dfd is insensitive to either the steric
or the electronic properties &. The unprecedented excellent
enantioselectivity obtained witla-ketoestes2 bearing alkenyl,
electron-rich aryl and sterically bulky alkyl groups is noteworthy.
Among them2a, 2d, and2| were previously reported to react with
nitromethane in 5777% ee with existing catalyst systems, and
enantioselective nitroaldol reaction was not documentedlipPe,
and2m.%abe

We have applied théd-catalyzed nitroaldol reaction to develop
new and concise asymmetric syntheses of synthetically important
chiral intermediates, such as aziridireand-lactamsb (Scheme
2).10 As shown by the conversion ofj to 8j, optically active

aziridines? are valuable intermediates for the synthesis of optically
active o, o-disubstitutedo-amino acids. It should be noted that
a-methylcysteineqj) was the key intermediate in the total syntheses
of mirabazoles and thiangazdieThe ability of 1d to promote
highly enantioselective nitroaldol reaction for a wide range of
a-ketoester®2 should facilitate the preparations of analogues of
these antitumor and anti-HIV natural products.

In conclusion, we have developed the first efficient organocata-
lytic enantioselective nitroaldol reaction with ketones using a new
C6 —OH cinchona alkaloidd. Employing a relatively low loading
of an easily accessible and recyclable chiral catalyst and affording
high enantioselectivity for a wide range ofketoesters?, the
reaction should provide a broadly useful approach for the asym-
metric synthesis of chiral compounds containing tetrasubstituted
carbon stereocenters. The current study also reveals for the first
time that the C6-OH cinchona alkaloidd are highly efficient
catalysts for enantioselective 1,2-additions to carbonyls.
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